Mapping plant functional types from MODIS data using multisource evidential reasoning

نویسندگان

  • Wanxiao Sun
  • Shunlin Liang
  • Gang Xu
  • Hongliang Fang
  • Robert Dickinson
چکیده

Reliable information about the geographic distribution and abundance of major plant functional types (PFTs) around the world is increasingly needed for global change research. Using remote sensing techniques to map PFTs is a relatively recent field of research. This paper presents a method to map PFTs from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a multisource evidential reasoning (ER) algorithm. The method first utilizes a suite of improved and standard MODIS products to generate evidence measures for each PFT class. The multiple lines of evidence computed from input data are then combined using Dempster's Rule of combination. Finally, a decision rule based on maximum support is used to make classification decisions. The proposed method was tested over the states of Illinois, Indiana, Iowa, and North Dakota, USA where crops dominate. The Cropland Data Layer (CDL) data provided by the United States Department of Agriculture were employed to validate our new PFT maps and the current MODIS PFT product. Our preliminary results suggest that multisource data fusion is a promising approach to improve the mapping of PFTs. For several major PFT classes such as crop, trees, and grass and shrub, the PFT maps generated with the ER method provide greater spatial details compared to the MODIS PFT. The overall accuracies increased for all the four states, with the biggest improvement occurring in Iowa from 51% (MODIS) to 64% (ER). The overall kappa statistic also increased for all the four states, with the biggest improvement occurring in Iowa from 0.03 (MODIS) to 0.38 (ER). The paper concludes with a discussion of several methodological issues pertaining to the further improvement of the ER approach. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Cover Classification Information Decision Making Fusion Based on Dempster-Shafer Theory: Results and Uncertainty

Land cover plays a significant role in the earth system science, which reflects the influence of human activities and environmental changes (Sellers et al., 1997; IGBP, 1990; Aspinall et al, 2004). In China, Many land use/cover maps can be used in recent years derived from remote sensing observation. These data will be whether or how combined effectively to produce better land cover map that is...

متن کامل

Post-classification of Misclassified Pixels by Evidential Reasoning: a Gis Approach for Improving Classification Accuracy of Remote Sensing Data

This paper discusses an approach for extracting supporting evidence from multisource spatial data and by rule-based models to incorporate the evidence with pre-classified Landsat TM data for improving classification accuracy. The process was focused on the extracted "possibly misclassified pixels" (PMPs) only. Based on Dempster-Shafer's theory of evidence, the concepts of homogeneous, heterogen...

متن کامل

Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential Reasoning and Artificial Neural Network Techniques for Geological Mapping

shows different slopes with an ordinal scale such as flat, As the availability of digital spatial data, other than from remiddle, and steep. Remote sensing images, on the other mote sensing, increases, it becomes increasingly important to hand, record radiance of surface targets with a ratio scale. develop algorithms to handle both remote sensing and other From a user's point of view, it is dif...

متن کامل

Modelling the Level of Adoption of Analytical Tools; An Implementation of Multi-Criteria Evidential Reasoning

In the future, competitive advantages will be given to organisations that can extract valuable information from massive data and make better decisions. In most cases, this data comes from multiple sources. Therefore, the challenge is to aggregate them into a common framework in order to make them meaningful and useful.This paper will first review the most important multi-criteria decision analy...

متن کامل

Multisource classification using ICM and Dempster-Shafer theory

We propose to use evidential reasoning in order to relax Bayesian decisions given by a Markovian classification algorithm (ICM). The Dempster–Shafer rule of combination enables us to fuse decisions in a local spatial neighborhood which we further extend to be multisource. This approach enables us to more directly fuse information. Application to the classification of very noisy images produces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007